SECOND SEMESTER M.Sc MATHEMATICS
 ASSIGNMENT QUESTIONS (2022 ADMISSION)

ALGEBRA

Questions

1. Show that set of all 2×2 matrices with real numbers as entries and determinant 1 is a group under matrix multiplication. Is it an abelian group?
2. Law of exponents for abelian group states that if a and b are any tow elements of an abelian group and n any integer, then $(a b)^{n}=a^{n} b^{n}$. Is it true for a non-abelian group?
3. Find the order of the group $U(12)$. Find the order of all elements in $\mathrm{U}(12)$.
4. Show that $\mathrm{U}(14)$ is cyclic
5. Find an example of an abelian group which is not cyclic
6. How many generators are there for a cyclic group of order 10 .
7. Prove that $S n$ is non-abelian for $n>2$.
8. Is Z under addition isomorphic to Q under addition?
9. Find an isomorphism from the group of integers under addition to the group of even integers under addition
10. Let n be an integer greater than 1 . Let $H=\{0, \pm n, \pm 2 n$, $\pm 3 n, \ldots \ldots\}$. Find all cosets of H in Z.

REAL ANALYSIS - II

1. Show that there exist uncountable sets of zero measure.
2. Show that monotone functions are measurable.
3. Let $f(x)=x \sin \left(\frac{1}{x}\right)$ if $x \neq 0$ and 0 if $x=0$. Find the four dérivâtes at $x=0$
4. Describe the ring generated by the finite open intervals.
5. Show that every algebra is a ring and every σ algebra is a σ ring but the converse is not true.
6. Prove that the limit of pointwise convergent sequence of measurable function is measurable.

COMPUTER PROGRAMMING - C++

1. A cricket team has the following table of batting figures for a series of test matches.

Player's name	Runs	Innings	Times not out
Sachin	8430	230	18
Saurav	4200	130	9
Rahul	3350	105	11
.	.	.	.
.	.	.	.

Write a program to read the figures set out in the above form, to calculate the batting average and to print out the complete table including the averages.
2. Write a program to evaluate the following functions to 0.0001% accuracy.
(a) $\operatorname{Sin} x=x-x^{3} / 3!+x^{5} / 5!-x^{7} / 7!+\ldots \ldots$
(b) $\operatorname{SUM}=1+(1 / 2)^{2}+(1 / 3)^{3}+(1 / 4)^{4}+\ldots$.
(c) $\operatorname{Cos} x=1-x^{2} / 2!+x^{4} / 4!-x^{6} / 6!+, \ldots$.
3. Write a program to print a table of values of the function $y=e^{-x}$ for x varying from 0 to 10 in steps of 0.1 . The table should appear as follows.

Table for $\mathrm{Y}=$ EXP [-X]

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.0									
1.0									
.									
.									
.									
9.0									

4. Write a program to calculate the variance and standard deviation of N numbers.

Variance $=\frac{1}{N} \sum_{i=1}^{N}(x 1-\overline{\mathbf{x}})^{2}$

Standard deviation $=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\overline{\mathbf{x}}\right)^{2}}$
Where $\overline{\mathrm{x}}=\frac{1}{N} \sum_{i=1}^{N} X 1$
5. An electricity board charges the following rates to domestic users to discourage large consumption of energy:

For the first 100 units- 60P per unit
For the next 200 units- 80P per unit
Beyond 300 units- 90P per unit

All users are charged a minimum of Rs. 50.00. of the total amount is more than Rs.300.00 then an additional surcharge of 15% is added.

Write a program to read the names of users and number of units consumed and print out the charges with the names.

TOPOLOGY -II

QUESTIONS

1. Prove that every open continuous image of a locally compact space is locally compact
2. Prove that every closed subspace of a locally compact space is locally compact.
3. Prove that an infinite product of discrete space may not be discrete.
4. Prove that a topological space (X, τ) is a Hausdorff space iff every net in X can converge to atmost one point.
5. Show that every filter \mathcal{F} on X is the intersection of all the ultrafilters finer than \mathcal{F}
6. Show that σ^{k} is the smallest convex set which contains all vertices of σ^{k}
