First semester M.Sc. Maths (2023 Admission)

Assignment Questions

Linear Algebra

1 Define the following with examples
i) Finite dimensional vector space ii) A sub space of an infinite dimensional vector space
$2) S_{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in F^{3}, x_{1}+2 x_{2}+3 x_{3}=0\right\}$ is a subspace
3) Let U and W are subspace of R^{8} with $\operatorname{dimU}=3$ and with $\operatorname{dimW}=5$ and $\operatorname{dim} U+\operatorname{dim} W=8$, Prove that $U \cap W=\{0\}$
4) Prove that if U and W are subspace of V then $U \cup W$ is asubspace of V iff one of the subspace is contained in the other
5) Prove that $T \in L(V), \mathrm{V}$ is a finite dimensional then the following are equivalent a) T is invertible b) T is injective c) T is surjective
6) Prove that $\operatorname{dim} L(V, W)=\operatorname{dim} V \cdot \operatorname{dim} W$,What is $\operatorname{dim} L(V, F)$,
7) Define Nilpotent operator with an example,
8) Find the basis of V if $v_{1}, v_{1}, v_{2} \ldots \ldots v_{k} \in V$ with $m\left(v_{k}\right)>1$
9) Prove that $\operatorname{det} A B=\operatorname{det} A \cdot \operatorname{det} B$
10) Prove that $\operatorname{MT}\left(u_{1}, u_{1} \ldots . . u_{n}\right)=A^{-1} M T\left(v_{1} v_{2} \ldots . v_{n}\right) \mathrm{A}$
11) Define
i)Trace
ii) determinant
iii)Eigen vector of linear operators
12) State and prove Cayley Hamilton

REAL ANALYSIS -1

Questions

1. Define the following with examples
a) Bounded variation
b) Total variation
c) Path
d) Rectifiable curve
e) Norm of a partition
j) step function
k) uniform convergence and continuity
2. $v_{f[a b]}=v_{f_{1}}[a b]+v_{f_{2}}[a b]+v_{f_{3}}[a b]+\cdots v_{f_{n}}[a b]$
3. Prove that $\int_{a}^{b} f d \alpha(s) d s=\int_{a}^{b} f \alpha^{\prime} d t$
4. state and prove Euler's summation formula
5. State and prove Riemann's conditions for integrability with respect to γ
6. Define concavity and convexity.
7. Prove that $f(x, y)=\frac{x^{2} y}{x^{4}+y^{2}} ;$ for $(x, y) \neq 0$ is not continuous at $(0,0)$.
8. Find the partial derivatives of the following functions
i) $f(x, y)=x^{2}+y^{2}$
ii) $f(x, y)=\frac{x y}{x^{2}+y^{2}}$ if $(x, y) \neq\left(\begin{array}{ll}0 & 0\end{array}\right)$

$$
=0 \text { if }(x, y)=(00)
$$

Differential Equations

1. Find the general solution of the equation $y^{\prime \prime}-2 y^{\prime}+5 y=25 x^{2}+12$.
2. Find a function on $-1 \leq x \leq 1,0 \leq y \leq 1$ which does not satisfy a Lipschitz condition.
3. Consider the differential equation $y^{\prime}=2 x y$ and find a power series expansion $\sum a_{n} x^{n}$.
4. Find the general solution of $\left(1+x^{2}\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0$ in terms of the power series in x .
5. In the differential equation $x^{3}(x-1) y^{\prime \prime}-2 x(x-1) y^{\prime}+3 x y=0$ locate and classify the singular points on the x axis.
6. Detremine the nature of the point $\mathrm{x}=0$ for the differential equation $x y^{\prime \prime}+$ $(\sin x) y=0$
7. Verify that $\sin ^{-1}(x)=x F\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, x^{2}\right)$.
8. Transform the Chebyshev's equation $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+p^{2} y=0$ into a hypergeometric equation by replacing x by $t=\frac{1}{2}(1-x)$ and show that its general solution near $x=1$ is $y=c_{1} F\left(p,-p, \frac{1}{2}, \frac{1-x}{2}\right)$.
9. Determine the nature of the point $x=\infty$ for Legendre's equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+p(p+1) y=0$
10. Show that
i) $\frac{d}{d x}\left[J_{0}(x)\right]=-J_{1}(x)$
ii) $\frac{d}{d x}\left[x J_{1}(x)\right]=x J_{0}(x)$

TOPOLOGY - I

Questions.

1. Show that the set C of all complex numbers is a metric space with respect to the metric d , defined by

$$
d\left(z_{1}, z_{2}\right)=\frac{\left|z_{1}-z_{2}\right|}{\left[\left(1+\left|z_{1}\right|^{2}\right)\left(1+\left|z_{2}\right|^{2}\right]^{\frac{1}{2}}\right.} \text { for all } z_{1}, z_{2} \text { in } \mathrm{C} .
$$

2. Prove that A metric subspace (Y, d) of a complete metric space (X, d) is complete iff Y is closed.
3. Let E be a totally bounded subset of a metric space X. Show that every sequence $\left\{a_{n}\right\}$ in E contains a Cauchy subsequence.
4. Let T be the class of subsets of N consisting of \emptyset and all subsets of N of the form $\mathrm{E}_{\mathrm{n}}=\{\mathrm{n}, \mathrm{n}+1, \mathrm{n}+2, \ldots .$.$\} with n \in N$.
i) Show that T is a Topology on N
ii) List the open sets containing the positive integer 6
5. Prove that a Topological space is compact iff every family of closed sets 7with empty intersection has a finite subfamily with empty intersection
6. Prove that every infinite subset of the Topological space has a limit point.
7. Prove that every compact Hausdorff space is a T_{4}-space.
